Hashing – resolving collisions

Open addressing: linear probing

· Hash function: (h(k)+I)modm for I=0, 1, . . , m-1.

· Insert: start with the location where the key hashed and do a sequential search for an empty slot.

· Search: stat with the location where the key hashed and do a sequential search until you either find the key (success) or find an emplty slot (failure).

· Delete: (lazy deletion) follow same route but mark slot as DELETED rather than EMPTY otherwise subsequent searches will fail (why?)

Open addressing: linear probing

· Disadvantage: primary clustering

· Long sequence of used slots build up with gaps between them

· Result: performance near sequential search

Open addressing: quadratic probing

· Probe the table at slots (h(k)+i2)modm for I=0,1,2,3. . ., m-1

· Careful: for some values of m (hash table size), very few slots end up being probed.

· Try m=16

· It is possible to probe all slots for certain ms. 

· For prime m, we get pretty good results.

· If the table is at least half-empty, an element can always be inserted

Open addressing: quadratic probing

· Better than linear probing but may result in secondary clustering: if h(k1)=h(k2) the probing sequences for k1 and k2 are exactly the same

· General hash function: (h(k)+c1i+c2i2)modm
Open addressing: double hashing

· The hash function is (h(k)+ih2(k))modm
· In english: use a second hash function to obtaing the next slot.

· The probing sequence is:

h(k), h(k)+h2(k), h(k)+2h2(k), h(k)+3h3(k), . . .
· Performance
· Much better than linear or quadratic probing
· Does not suffer from clustering
· BUT requires a computation of a second function s.
Open addressing: double hashing

· The choice of h2(k) is important

· It must never evaluate to zero

· Consider h2(k)=kmod9
for k=81
· The choice of m is important

· If it is not prime, we may run out of alternate locations very fast

· If m and h2(k) are relatively prime, we’ll end up probing the entire table.

· A good choice for h2 is h2(k)=p*(kmodp) where p is a prime less than m.

Open addressing: random probing

· Use a psedorandom number generator to obtaing the sequence of slots that are probed

Open addressing: expected # of probes

· Assuming uniform hashing. . .

· Insert/Unsuccessful search : 1/(1-()

· Successful search : (1+ln(1/(1-())/(
Example

· M=13

· Sequence of keys: 18-26-35-9-64-47-96-36-70

· h1(k)=kmod13

· Insert the sequence into a hash table using

· Linear probing

· Quadratic probing

· Double hashing with h2(k)=kmod 7+6

Hashing –rehashing

· If the table becomes too full, its performance falls.

· The O(1) property is lost

· Solution:

· Build a bigger table (e.g. approximately twice as big) and rehash the keys of the old table.

· When should we rehash?

· When the table is half full?

· When an insertion fails?

· When a certain load factor has been reacher?

